Root Locus Recap

- Root Locus: a method of presenting graphical information about a system’s behavior when the controller is working
 - Common tool for design of closed loop systems
 - Allows us to sketch out system behavior for a range of K

Example 1

Given the closed loop transfer function:

\[\frac{K}{s^2 + 10s + K} \]

Look at poles for different values of K

<table>
<thead>
<tr>
<th>K</th>
<th>Pole 1</th>
<th>Pole 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-10</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results for Example 1

Why the Root Locus Works?

- Closed loop transfer function
 \[T(s) = \frac{KG(s)}{1 + KG(s)H(s)} \]
- Poles occur when
 \[KG(s)H(s) = -1 = 1 \angle (2k + 1)180^\circ \]
 - Must consider both magnitude and angle
Rules for the Root Locus

- Number of branches = close loop poles
 - Branch path that one pole traverses as the gain is varied
- Root Locus is symmetric about the real axis
- The root locus segments lie on the real axis to the left of an odd number of open loop poles and zeros
- The root locus begins (0 gain) at the poles and ends (∞ gain) at the zeros (finite and infinite) of \(G(s)H(s) \)
- Asymptotes
 \[
 \sigma_a = \sum_{\text{finite poles}} - \sum_{\text{finite zeros}} \frac{1}{2k + 1}
 \]
 \[
 \theta_a = \sum_{\text{finite poles}} - \sum_{\text{finite zeros}}
 \]
- Break-out & Break-in Points \(\frac{d[G(s)H(s)]}{ds} = 0 \)

Low Order Loci

- Use only the first few rules
 - Use the rules in order
- Practice sketching loci to gain proficiency
- The following are some examples of low order loci

One Pole

- \(1/(s+2) \) w/ pole = -2

Two Poles

- \(1/(s^2 + 6s + 8) \) with poles at -2, -4
One Zero, Two Poles

\[\frac{s+3}{s^2 + 6s + 8} \] with one zero at -3 and poles at -2, -4

Zero Outside Two Poles

\[\frac{s+5}{s^2 + 6s + 8} \] with one zero at -5 and poles at -2, -4

Three Poles

\[\frac{1}{s^3 + 12s^2 + 44s + 48} \] with poles at -2, -4, -6

No Breakaway Points

\[\frac{1}{s^3 + 8s^2 + 37s + 50} \] with poles at -2, -3 \(\pm j4 \)
With Breakaway Points

\[\frac{1}{s^3 + 25s^2 + 193s + 169} \text{ with poles at } -1, -12 \pm j5 \]

One Zero, Three Poles

\[\frac{s+2}{s^3 + 11s^2 + 34s + 24} \text{ with one zero at } -2 \text{ and poles at } -1, -4, -6 \]

A Few More Details on the Root Locus

- \(j\omega \)-axis crossings
 - Obtain this via Routh-Hurwitz criterion
 - Force a row of zeros in the Routh table to get this gain
 - Once we have the gain, we can solve for \(s \)

- Consider

\[T(s) = \frac{K(s + 3)}{s^4 + 7s^3 + 14s^2 + (8 + K)s + 3K} \]

Transient Response Design via Gain Adjustment

- Design Procedure for Higher Order Systems
 1. Sketch the RL
 2. Assume 2nd order system w/ no zeros
 3. Find \(K \) to meet transient response specs
 4. Verify positions of higher order poles to make sure assumptions are valid
 5. If assumptions do not hold, simulate system numerically
Recall From Chapter 4

\[G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \]
\[s_{1,2} = -\zeta\omega_n \pm \omega_n \sqrt{\zeta^2 - 1} \]

\[T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}} = \frac{\pi}{\omega_d} \]
\[T_s = \frac{4}{\zeta\omega_n} = \frac{4}{\sigma_d} \]
\[\%OS = e^{\frac{\zeta\pi}{\sqrt{1 - \zeta^2}}} \times 100\% \]

Peak Time

- As \(\omega_d \) increases, \(T_p \) decreases

\[T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}} = \frac{\pi}{\omega_d} \]

Settling Time

- As \(-\sigma_d \) increases, \(T_s \) decreases

\[T_s = \frac{4}{\zeta\omega_n} = \frac{4}{\sigma_d} \]

Overshoot

- Let \(\theta \) be the angle made by \(-\sigma_d + j\omega_d \)
 - \(\sigma_d = \cos \theta \)
 - \(\%OS = e^{\zeta\pi/\sqrt{1 - \zeta^2}} \times 100\% \)
In Summary

Conditions for Second-Order Approximations
- Higher order poles are much farther to the left of the dominant 2nd order poles
- Closed-loop zeros near closed-loop 2nd order poles are canceled by proximity of higher-order closed-loop poles
- Closed-loop zeros not canceled by proximity of higher-order closed-loop poles are far from closed-loop 2nd order poles

Example
- Design value of K such that we get 1.52% overshoot.
- Estimate settling time, peak time, and steady-state error.

Generalized Root Locus
- What about this system?
- Can we determine the behavior of the system for a range of p_1 values?
- Answer: Yes!
Root Locus for Positive Feedback Systems

1. Number of branches =
 # of closed-loop poles

2. Symmetry

3. Real Axis Segments: to the left of even (vs. odd) # of finite poles and/or zeros

4. Starting & ending points

5. Asymptotes & intercepts
 \[\sigma_a = \frac{\sum \text{finite poles} - \sum \text{finite zeros}}{2N_a} \]
 \[\theta_a = \frac{\text{finite poles} - \text{finite zeros}}{N_a} \]

6. Break-out & break-in points
 \[\frac{d}{ds}[G(s)H(s)] = 0 \]