The Nyquist Criterion

- Relates stability of the closed-loop system to the open-loop frequency response and open-loop pole location
- Gives # of closed-loop poles in RHP
- Similar to root-locus, we look at $1 + G(s)H(s) = 0$
- Unlike root-locus, we can simplify to $G(s)H(s)$

The Concept of Mapping

- Consider the following function: $F(s) = s - s_0$

 s_0 is possibly complex.

Mapping Continued

- Similarly, consider $F(s) = 1/(s - s_0)$ where s_0 is possibly complex.

Mapping Continued

- Suppose $F(s)$ is given by $F(s) = (s-s_0)(s-s_1)$

Note: # of zeros inside $C = $ # of times Γ encircles the origin clockwise
Mapping Continued

- Next, suppose F(s) is given by
 \[F(s) = \frac{1}{(s-s_0)(s-s_1)} \]

Note: # of zeros inside \(C \) = # of times \(\Gamma \) encircles the origin counterclockwise

Derivation of the Nyquist Criterion

Note the following:
1. Relationship between poles of \(1+G(s)H(s) \) & poles of \(G(s)H(s) \)
2. Relationship between zeros of \(1+G(s)H(s) \) & poles of \(T(s) \)

Let \(G(s) = \frac{N_G}{D_G} \) and \(H(s) = \frac{N_H}{D_H} \)

Note:
1) Poles of \(1+GH \) = poles of \(GH \)
2) Zeros of \(1+GH \) = poles of \(T \)

Derivation Continued

Let \(F(s) = 1+G(s)H(s) \)

The Nyquist Criterion

Given \(F(s) = 1 + G(s)H(s) \), recall

\[G(s)H(s) = \frac{N_GN_H}{D_GD_H} \]
\[1 + G(s)H(s) = \frac{D_GD_H}{D_GD_H + N_GN_H} \]
\[T(s) = \frac{G(s)}{1 + G(s)H(s)} = \frac{D_GD_H}{N_GD_H} \]

Zeroes of \(F(s) \) correspond to the poles of \(T(s) \)!

Since \(N = P - Z \), if \(Z > 0 \) then system is unstable!
Cauchy’s Principle of Argument

Theorem:
Let \(F(s) \) be the ratio of 2 polynomials in \(s \). Let the closed curve \(C \) in the \(s \)-plane be mapped into the complex plane through the mapping \(F(s) \). If \(F(s) \) is analytic within and on \(C \), except at a finite number of poles, and if \(F(s) \) has neither poles nor zeros on \(C \), then

\[
N = P - Z
\]

where \(Z \) is the number of zeros of \(F(s) \) in \(C \), \(P \) is the number of poles in \(F(s) \) in \(C \), and \(N \) is the number of counterclockwise encirclements of the origin. (Phillips & Harbor)

Some More Simplification

Instead of \(F(s) = 1 + G(s)H(s) \), let \(F(s) = G(s)H(s) \)

Then, \(N = P - Z \) is the number of counterclockwise encirclements of \(-1\)

Stability via Nyquist Criterion

- \(Z = 0 \)
- \(P = 0 \)
- Thus, \(N = 0 \)

- \(Z = 2 \)
- \(P = 0 \)
- Thus, \(N = 2 \)

A Closer Look

- Counterclockwise \(\Rightarrow +1 \)
- Clockwise \(\Rightarrow -1 \)
Applying the Nyquist Criterion

- Use $Z = P - N$
- Consider

\[\frac{R(s)}{E(s)} = \frac{K(s + 3)(s + 5)}{(s - 2)(s - 4)} C(s) \]

- Open-loop poles 2, 4
- Open-loop zeros -3, -5
- Question: For what range of K is closed-loop system stable?

First note ...

Matlab: zpk, nyquist

Note the following:

- As K changes, Γ inflates/deflates
- For this system, $P = 2$, thus $N = P - Z$
 - If $Z = 0 \Rightarrow$ system is unstable
 - For system to be stable, $Z = 0 \Rightarrow N = 2$

To Find K

- Obtain Nyquist plot w/ $K = 1$
- Note, if Nyquist diagram intersections real-axis @ -1

\[G(j\omega)H(j\omega) = -1 \]

System is marginally stable

- Let $-1/K$ be the critical point (instead of -1), find K to satisfy Nyquist criteria

Example

Given

\[G(s) = \frac{K}{s(s + 3)(s + 5)} \]

Step 1: Set $K = 1$, sketch poles & zeros in s-plane, plot Nyquist diagram

Step 2: Find $G(j\omega)H(j\omega)$

Step 3: Find point where Nyquist intersects negative real axis

Step 4: Determine N for stability and then K
Stability and PhaseMargins

Gain Margin:
change in open-loop gain (dB) at 180° to make closed-loop system unstable

Phase Margin:
change in open-loop phase shift at unity gain to make closed-loop system unstable

Gain margin = \(G_M = 20 \log \alpha \)
Phase margin = \(\Phi_M = \alpha \)

Stability Range via Bode Plots
Given \(G(s) = \frac{K}{(s+5)(s+20)(s+50)} \), use Bode plots to find range of \(K \) where system is stable.

Evaluating Gain and Phase Margins

Close-loop Transient vs. Frequency Response

• Recall, 2nd order-system

\[
M_P = \frac{1}{2\zeta \sqrt{1 - \zeta^2}}
\]

\[
\omega_P = \omega_n \sqrt{1 - 2\zeta^2}
\]
Phase Margin via Damping Ratio

- Consider the 2nd order open-loop TF
 \[G(s) = \frac{\omega_n^2}{s(s + 2\zeta \omega_n)} \]

- Compute the Phase Margin, \(\Phi_M \):
 \[\Phi_M = \tan^{-1} \left(\frac{2\zeta}{\sqrt{-2\zeta^2 + \sqrt{1 + 4\zeta^4}}} \right) \]

Bandwidth of a System

- Frequency at which magnitude of response curve is 3dB below its value at 0 rad/s
 \[\omega_{BW} = \omega_n \sqrt{(1 - 2\zeta^2) + \sqrt{4\zeta^4 - 4\zeta^2 + 2}} \]

Steady-State Error

- Unit Step Input
 \[e(\infty) = \frac{1}{1 + \lim_{s \to 0} G(s)} \]

- Ramp Input
 \[e(\infty) = \frac{1}{\lim_{s \to 0} sG(s)} \]

- Parabolic Input
 \[e(\infty) = \frac{1}{\lim_{s \to 0} s^2G(s)} \]

- Position Constant
 \[K_p = \lim_{s \to 0} G(s) \]

- Velocity Constant
 \[K_v = \lim_{s \to 0} sG(s) \]

- Acceleration Constant
 \[K_a = \lim_{s \to 0} s^2G(s) \]

Bode Plots & Steady-State Error Constants
Lead Compensation
- Passive analog of PD compensation
- Cascade compensator

\[G_c(s) = \frac{1}{\beta} s + \frac{1}{\beta T} \]

The Effects of a Lead Compensator

Design Procedure for Lead Compensation
1. Find closed-loop bandwidth requirement to meet \(T_s, T_p \) or \(T_r \)
2. Set \(K \) s.t. uncompensated system satisfies steady-state error specs
3. Plot Bode plots for set \(K \) and determine uncompensated system’s phase margin
4. Find phase margin to meet \(\zeta \) or \%OS, find phase contribution from \(G_c \)
5. Determine \(\beta \)
6. Determine \(|G_c(j\omega)| \) @ peak of phase curve
7. Determine phase margin \(\phi \)
8. Design the break frequency for \(G_c \)
9. Reset system gain to compensate for \(G_c \)’s gain
10. Check bandwidth to ensure Step 1 specs are met
11. Simulate to check
12. Redesign if needed

Frequency Response of the Lead Compensator
Determine \(M_c(\omega), \phi_c(\omega) \), given

\[G_c(s) = \frac{1}{\beta} s + \frac{1}{\beta T} \]

\[M_c(\omega_{max}) = \sqrt{\frac{1}{\beta}} \]

\[\phi_c(\omega_{max}) = \tan^{-1} \left(\frac{1 - \beta}{2\sqrt{\beta}} \right) = \sin^{-1} \left(\frac{1 - \beta}{1 + \beta} \right) \]
Example

Given \(G(s) = \frac{K}{s[(s+50)(s+120)]} \), design a lead compensator
s.t. \%OS = 20\%, \(T_S = 0.2s \), and \(K_v = 50 \).