Root Locus

- Root Locus: a method of presenting graphical information about a system’s behavior when the controller is working
 - Common tool for design of closed loop systems
 - Allows us to sketch out system behavior for a range of K
- Rules (negative feedback systems):
 - Number of branches = close loop poles
 - Root Locus is symmetric about the real axis
 - The root locus segments lie on the real axis to the left of an odd number of open loop poles and zeros
 - The root locus begins (0 gain) at the poles and ends (∞ gain) at the zeros (finite and infinite) of $G(s)H(s)$
- Asymptotes
 - $\alpha = \frac{\sum$finite poles - infinite zeros $}{\sum$finite zeros $(2k+1)\pi}$
 - $\theta = \frac{\sum$finite poles - infinite zeros $}{\sum$finite zeros $\pi}$
- Break-out & Break-in Points
 - $d \frac{[G(s)H(s)]}{ds} = 0$

Translant Response Design via Gain Adjustment

- Design Procedure for Higher Order Systems
 1. Sketch the RL
 2. Assume 2nd order system w/ no zeros
 3. Find K to meet transient response specs
 4. Verify positions of higher order poles to make sure assumptions are valid
 5. If assumptions do not hold, simulate system numerically

Compensator Configurations

- Cascade
 - Cascade compensator
 - Original controller
 - Plant

- Feedback
 - Original controller
 - Plant
 - Feedback compensator

PID Controller Design

- $G_c(s) = K_1 + \frac{K_2}{s} + K_3s$
- 1. Evaluate uncomp sys to get determine desired transient
- 2. Design PD controller
- 3. Simulate to check
- 4. Redesign if necessary
- 5. Design PI controller to yield desired steady-state error
- 6. Determine K_1, K_2, and K_3
- 7. Simulate to check
- 8. Redesign if necessary
PID Controller Design

\[G_c(s) = K_1 + \frac{K_2}{s} + K_3s \]

1. Evaluate uncomp sys to get determine desired transient
2. Design PD controller
3. Simulate to check
4. Redesign if necessary
5. Design PI controller to yield desired steady-state error
6. Determine \(K_1, K_2, \) and \(K_3 \)
7. Simulate to check
8. Redesign if necessary

Feedback Compensation

- Disadvantage: More complicated
- Advantage: Faster response
 - Sometimes physical system characteristics does not allow us to use cascade compensators
 - Often does not require additional amplification
 - Two Approaches

Approach 1

- Design a minor loop’s transient response separately from the closed-loop system response.
- Example 3:
 - \(\zeta = 0.8 \) for minor
 - \(\zeta = 0.6 \) for closed-loop

Approach 2

- Design a minor loop’s transient response separately from the closed-loop system response.
Frequency Response

Definition:
- The *frequency response* of a linear system is the relationship between the gain and the phase of a sinusoidal input and the corresponding sinusoidal output.

Note:
- Frequency response gives steady state response
- Complements analysis from root locus
- Often used to back out system parameters
- Not so good for transient analysis

From Last Time

- Frequency Response
- Leads to 2 plots
 - M_G vs. ω
 - $20\log_{10}(M_G)$ vs. $\log_{10}(\omega)$
 - ϕ_G vs. ω
 - $20\log_{10}(M_G)$ vs. $\log_{10}(\omega)$

Bode Plots

Nyquist Criterion

Instead of $F(s) = 1 + G(s)H(s)$, let $F(s) = G(s)H(s)$

Then, $N = P - Z$ is the number of counterclockwise encirclements of -1

Using Nyquist Criterion to Find K

Given: $G(s) = \frac{K}{s(s + 3)(s + 5)}$

Step 1: Set $K = 1$, sketch poles & zeros in s-plane, sketch Nyquist diagram

Step 2: Find $G(j\omega)H(j\omega)$

Step 3: Find point where Nyquist intersects negative real axis

Step 4: Determine N for stability and then K
Gain and Phase Margins

Gain Margin:
- change in open-loop gain (dB) at 180° to make closed-loop system unstable

Phase Margin:
- change in open-loop phase shift at unity gain to make closed-loop system unstable

Frequency Response of the Lead Compensator

Determine $M_c(\omega)$, given

Design Procedure for Lead Compensation

1. Find closed-loop bandwidth requirement to meet T_s, T_p or T_r
2. Set K s.t. uncompensated system satisfies steady-state error specs
3. Plot Bode plots for set K and determine uncompensated system's phase margin
4. Find phase margin to meet ζ or %OS, find phase contribution from G_c
5. Determine β
6. Determine $|G_c(j\omega)|$ @ peak of phase curve
7. Determine phase margin ϕ
8. Design the break frequency for G_c
9. Reset system gain to compensate for G_c's gain
10. Check bandwidth to ensure Step 1 specs are met
11. Simulate to check
12. Redesign if needed

Design Procedure for Lag Compensator

- $G_c(s) = \frac{s + \frac{1}{T}}{s + \frac{1}{\alpha T}}$

1. Set K to satisfy steady-state specification & plot Bode diagrams for selected K
2. Find ω_d where such that Φ_M is 5°-12° greater than $\Phi_M(\omega_d)$
3. Set $|G_c(j\omega_d)|$ s.t Bode plot for $G_c(j\omega)G(j\omega)$ goes through 0dB at ω_d
4. Set upper break freq. @ 1 decade below ω_d
5. Low freq. asymptote to be at 0 dB
6. Connect low + high freq. asymptote via -20 dB/decade line to locate low break freq.
7. Reset K to compensate for any attenuation from G_c to maintain steady-state specs
PI Compensation w/ Bode Plots

\[G_c(s) = \frac{K_1 + \frac{K_2}{s}}{s} = \frac{K_1(s + \frac{K_2}{s})}{s} \]

1. Set \(K \) to meet steady-state spec
2. Determine the phase contribution of \(G_c \) and thus \(\Phi_{M,\text{comp}} \)
3. Plot Bode plots for \(G(s) \) for \(K \) chosen in Step 1
4. Find \(\omega \) and magnitude (dB) s.t. phase angle is \((-180^\circ + \Phi_{M,\text{comp}})\)
5. Set break freq. to be 0.1 \(\omega \)
6. Set \(K_1 \) s.t. magnitude of response is 0 dB at \(\omega \)

PD Compensation w/ Bode Plots

\[G_c(s) = K_1 + \frac{K_2}{s} = K_2(\frac{s + K_1}{K_2}) \]

1. Find closed-loop \(\omega_{WB} \) to meet \(T_p, T_r, \) or \(T_s \)
2. Set \(K \) to meet steady-state
3. Pick the \(\omega_{WB,\text{new}} = \omega_{WB} + \omega_{\text{correction}} \) where \(\omega_{\text{correction}} \) is set by the designer
4. Find the phase angle at the new \(\omega_{WB,\text{new}} \) (given in 3)
5. Find the contribution of the compensator = \(-180^\circ + \Phi_{\omega_{WB,\text{new}}} + \Phi_{M}(\zeta_d)\)
6. Determine \(K_1/K_2 \) based on the angle found in 5
7. Set \(K_2 \) such that DC gain of compensator is unity

Z-Transforms

<table>
<thead>
<tr>
<th>(f(t))</th>
<th>(F(z))</th>
<th>(f(KT))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u(t))</td>
<td>(\frac{z}{z-1})</td>
<td>(u(KT))</td>
</tr>
<tr>
<td>(t)</td>
<td>(\frac{z}{z^2})</td>
<td>(KT)</td>
</tr>
<tr>
<td>(e^{-at})</td>
<td>(\frac{z}{z-e^{-aT}})</td>
<td>(e^{-at})</td>
</tr>
<tr>
<td>(e^{-at}) (e^{+z})</td>
<td>(z) (z)</td>
<td>((z)^t e^{-at})</td>
</tr>
<tr>
<td>(\sin \omega t)</td>
<td>(\frac{\omega}{z^2 + \omega^2})</td>
<td>(\sin \omega KT)</td>
</tr>
<tr>
<td>(\cos \omega t)</td>
<td>(\frac{z + \omega}{z^2 - 2\omega \cos \omega T})</td>
<td>(\cos \omega KT)</td>
</tr>
<tr>
<td>(e^{-at} \sin \omega t)</td>
<td>(\frac{\omega}{z^2 + \omega^2})</td>
<td>(e^{-at} \sin \omega KT)</td>
</tr>
<tr>
<td>(e^{-at} \cos \omega t)</td>
<td>(\frac{z + \omega}{z^2 - 2\omega \cos \omega T})</td>
<td>(e^{-at} \cos \omega KT)</td>
</tr>
</tbody>
</table>

Z-Transform Theorems

<table>
<thead>
<tr>
<th>Theorem</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z(tf(t)) = zF(z))</td>
<td>Linearity theorem</td>
</tr>
<tr>
<td>(z(f(t) + f(t)) = F(z) + F(z))</td>
<td>Linearity theorem</td>
</tr>
<tr>
<td>(z(e^{-at} f(t)) = F(e^{-aT})z)</td>
<td>Complex differentiation</td>
</tr>
<tr>
<td>(z(f(i - nT)) = z^nf(z))</td>
<td>Real translation</td>
</tr>
<tr>
<td>(z(f(t)) = -\frac{1}{T} \frac{dF(z)}{dz})</td>
<td>Complex differentiation</td>
</tr>
<tr>
<td>(f(0) = \lim_{z \to 0} z^{-n} f(z))</td>
<td>Initial value theorem</td>
</tr>
<tr>
<td>(f(\infty) = \lim_{z \to 1} (1 - z)^{-1} F(z))</td>
<td>Final value theorem</td>
</tr>
</tbody>
</table>

Note: \(iT \) may be substituted for \(z \) in the table.
Stability

- Stability via the s-Plane
 - Routh-Hurwitz criterion for stability
 - More helpful to have transformations that are linear
 - Bilinear Transformations between s-Plane and z-Plane
 \[
 s = \frac{z + 1}{z - 1} \\
 z = \frac{s + 1}{s - 1}
 \]

Transient Performance Specifications

In the s-plane
- \(T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}} = \frac{\pi}{\omega_d} \)
- \(T_s = \frac{4}{\zeta \omega_n} = \frac{4}{\sigma_d} \)
- \(%OS = e^{-\zeta \pi / \sqrt{1 - \zeta^2}} \times 100\% \)
Cascade Compensation
- Design via s-plane
- Transform controller into z-plane
 - Transformation that preserves behavior of continuous compensator
- Tustin Transformations:
 - Bilinear transformation that yields digital transfer function whose output matches analog version at the sampling instants

\[
\begin{align*}
 s &= \frac{2z - 1}{Tz + 1} \\
 z &= \frac{1 + \frac{T}{2}s}{1 - \frac{T}{2}s}
\end{align*}
\]

Choosing T
- If T is too large (or too low sampling frequency)
- In general, upper bound on T should be

\[
\frac{0.15}{\omega_M} \leq T \leq \frac{0.5}{\omega_M}
\]

Pole Placement
- Given \(G(s) = \frac{20(s+5)}{s(s+1)(s+4)}\), design phase-variable feedback gains to yield 9.5% overshoot with \(T_s = 0.74\) sec
- Locations of poles: \(-5.4 \pm j7.2, -5.1\)