Second – Order Systems

- Given, \(G(s) = \frac{1}{s^2 + bs + c} \) and \(R(s) = \frac{1}{s} \), we know
 \[
 C(s) = \frac{1}{s(s^2 + bs + c)} = \frac{K_1}{s} + \frac{K_2}{s + r_1} + \frac{K_3}{s + r_2}
 \]

- Possible solutions
 - \(r_1 \) and \(r_2 \) are real & distinct
 - \(r_1 \) and \(r_2 \) are real & repeated
 - \(r_1 \) and \(r_2 \) are both imaginary
 - \(r_1 \) and \(r_2 \) are complex conjugates

Case 1: Real & Distinct Roots

\[
C(s) = \frac{1}{s(s^2 + bs + c)} = \frac{K_1}{s} + \frac{K_2}{s + r_1} + \frac{K_3}{s + r_2}
\]

This gives

\[
c(t) = K_1 e^{-r_1 t} + K_2 e^{-r_2 t} + K_3 e^{-r_1 t}
\]

Overdamped response
Case 2: Real & Repeated Roots

\[c(t) = K_1 + K_2 e^{-\xi t} + K_3 e^{-\xi t} \]

This gives a critically damped response.

Case 3: All Imaginary Roots

\[c(t) = K_1 + K_4 \cos(\omega t - \phi) \]

Gives an undamped response.

Case 4: Roots Are Complex

\[c(t) = K_1 + K_2 e^{-\omega_0 t} \cos(\omega t - \phi) \]

Gives an underdamped response.

General Underdamped Systems

Given \(G(s) = \frac{u_0^2}{s^2 + 2\zeta \omega_0 s + \omega_0^2} \) and \(R(s) = \frac{1}{s} \) such that \(\zeta < 0 \) and \(\omega_0 > 0 \), using PFE we obtain

\[c(t) = K_1 \left(\frac{\sigma + \zeta \omega_0}{\sqrt{\zeta^2 + \omega_0^2}} \sqrt{1 - \zeta^2} \right) \frac{1}{\sigma^2 + 2\zeta \omega_0 \sigma + \omega_0^2} + K_2 \frac{\omega_0^2}{\sigma^2 + 2\zeta \omega_0 \sigma + \omega_0^2} \]

Taking the inverse Laplace results in

\[c(t) = 1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\omega_0 t} \cos\left(\omega_0 \sqrt{1 - \zeta^2} t - \phi\right) \]

with \(\phi = \tan^{-1} \left(\frac{\zeta}{\sqrt{1 - \zeta^2}} \right) \).
Characterizing Underdamped Systems

Peak Time: \(T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}} \)

Percent Overshoot: \(\%OS = e^{-\pi \sqrt{1 - \zeta^2}} \times 100\% \)

(Note: given %OS, we can use the equation to solve for \(\zeta \))

Settling Time: \(T_s = \frac{4}{\zeta \omega_n} \)

Rise Time: obtained numerically

Characterizing Underdamped Systems

As \(\omega_d \) increases, \(T_p \) decreases

Peak Time

As \(\omega_d \) increases, \(T_p \) decreases

\(T_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}} = \frac{\pi}{\omega_d} \)
Settling Time

As $-\sigma_d$ increase, T_s decreases.

\[T_s = \frac{4}{\zeta \omega_n} = \frac{4}{\sigma_d} \]

Overshoot

- Let θ be the angle made by $-\sigma_d + j\omega_d$
- $\sigma_d = \cos \theta$

\[\%OS = e^{-\zeta \sqrt{1 - \zeta^2}} \times 100\% \]

In Summary

Higher Order Systems

Approximation via 2nd order system?
- Yes, only under certain conditions
Higher Order Systems

Consider

\[C(s) = \frac{A}{s^4} + \frac{B(s + C_0)}{(s + \alpha_1)(s + \alpha_2)} + \frac{C}{s + \alpha_3} + \frac{D}{s + \alpha_4} \]

Dominant Poles

\[\alpha_F \gg \zeta \omega_N \]

Stability

- Total response of the system is
 \[e(t) = e_{\text{forced}}(t) + e_{\text{natural}}(t) \]

- A linear time-invariant (LTI) system is
 - Stable if \(e_{\text{natural}}(t) \to 0 \) as \(t \to \infty \)
 - Unstable if \(e_{\text{natural}}(t) \to \infty \) as \(t \to \infty \)
 - Marginally stable if \(e_{\text{natural}}(t) \) neither grows or decays as \(t \to \infty \)

- Another definition – Bounded Input Bounded Output (BIBO)
 - A system is stable if every bounded input yields a bounded output
 - A system is unstable if every bounded input yields an unbounded output

\[\delta - \varepsilon \] relationship of stability

- Stability in the sense of Lyapunov
 - \(C(t) \) is stable if and only if for any \(\varepsilon > 0 \), \exists \delta > 0 \) such that
 \[\|e(0)\| < \delta \]
 \[\|e(t)\| < \varepsilon, \quad t > 0 \]

- Asymptotic Stability
 - \(C(t) \) is asymptotically stable if and only if for any \(\delta > 0 \) such that
 \[\|e(0)\| < \delta \]
 \[\|e(t)\| \to 0, \quad \text{as} \ t \to \infty \]

Stability & Location of Poles
Routh-Hurwitz
- Provides stability information without requiring to explicitly solve for poles
- Trivial for analysis
- Provides bounds for design
- 2 Steps:
 - Step 1: Generate Routh table
 - Step 2: Interpret the Routh table following Routh-Hurwitz criterion

Generating a Basic Routh Table

<table>
<thead>
<tr>
<th>s^4</th>
<th>a_4</th>
<th>a_3</th>
<th>a_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>s^3</td>
<td>a_3</td>
<td>a_2</td>
<td>a_1</td>
</tr>
<tr>
<td>s^2</td>
<td>a_2 a_1</td>
<td>b_1</td>
<td>a_1 a_0</td>
</tr>
<tr>
<td>s^1</td>
<td>b_1 b_0</td>
<td>c_1</td>
<td>b_0 b_0</td>
</tr>
<tr>
<td>s^0</td>
<td>c_1</td>
<td>d_1</td>
<td>c_0 c_0</td>
</tr>
</tbody>
</table>

Routh-Hurwitz Criterion
- # of roots located in the RHP == # of sign changes in the 1st column of Routh table

<table>
<thead>
<tr>
<th>s^4</th>
<th>1</th>
<th>31</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>s^3</td>
<td>10</td>
<td>1030</td>
<td>0</td>
</tr>
<tr>
<td>s^2</td>
<td>-72</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s^1</td>
<td>103</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Example 4

$$T(s) = \frac{10}{s^5 + 2s^4 + 3s^3 + 6s^2 + 5s + 3}$$
Another Method to Handle 0s in 1st Column

- Fact:
 - $R_1 = \text{Roots(Polynomial 1)}$
 - $R_2 = \text{Roots(Polynomial 2)}$
 - For every $r_i \in R_1$ and $r_j \in R_2$, $r_i = 1/r_j$ for all $i = 1, \ldots, p$
 - Then # of r_i in RHP & LHP == # of r_j in RHP & LHP

- Given: $a^n + a_{n-1}s^{n-1} + \cdots + a_1s + a_0 = 0$
- Let $s = 1/d$, then
 \[
 \left(\frac{1}{d}\right)^n \left[1 + a_{n-1}d + \cdots + a_1d^{n-1} + a_0d^n\right] = 0
 \]

Entire Row in Routh Table is 0

- From our previous example, the row immediately before the row of 0s is
 \[
 P(s) = s^4 + 6s^2 + 8
 \]
 then, compute $dP/ds = 4s^3 + 12s + 0$
- Replace the row of zeros with the coefficients of dP/ds

Example 4 – Again

- $T(s) = \frac{10}{s^5 + 2s^4 + 3s^3 + 6s^2 + 5s + 3}$
- $D(d) = 3d^5 + 5d^4 + 6d^3 + 3d^2 + 2d + 1$

| d^5 | 3 | 6 | 2 |
| d^4 | 5 | 3 | 1 |
| d^3 |
| d^2 |
| d^1 |
| d^0 |

Why does this work?

- A row of zeros appear when a purely even or purely odd polynomial is a factor of $D(s)$
 - Ex: $s^4 + 5s^2 + 7$ – even
 - $s^5 + 5s^3 + 7s + 1$ – other
- Even polynomials only have roots that are symmetrical about the origin
Why does this work?

- Row b/4 the zeros contains the even polynomial that is a factor of \(D(s) \)
- Rows containing even polynomial to end of Routh table – test of ONLY the even polynomial

\(s^5 \)	1	6	8
\(s^4 \)	1	6	8
\(s^3 \)	4	8	0
\(s^2 \)	3	8	0
\(s^1 \)	1/3	0	0
\(s^0 \)	8	0	0

Furthermore

\[T(s) = s^6 + s^5 + 12s^4 + 22s^3 + 39s^2 + 59s + 48s^2 + 38s + 20 \]

\(s^6 \)	1	12	39	48	20
\(s^5 \)	1	22	59	38	0
\(s^4 \)	-1	-2	1	2	0
\(s^3 \)	1	-3	2	0	0
\(s^2 \)	8	2	0	0	0
\(s^1 \)	3	4	0	0	0
\(s^0 \)	4	0	0	0	0

- Odd RHP Poles: 2
- Odd LHP Poles: 2
- Even RHP Poles: 0
- Even LHP Poles: 0
- Even \(j\omega \) Poles: 4

Stability Design via Routh – Hurwitz

- Consider \(\frac{R(s)}{C(s)} = \frac{K}{s^3 + 18s^2 + 77s + K} \)

- Find the range of \(K \) for system to be stable assuming \(K > 0 \).

- Step 1: Obtain transfer function \[T(s) = \frac{K}{s^3 + 18s^2 + 77s + K} \]

- Step 2: Construct Routh Table

- Want \(K > 0 \) s.t. system is stable

\(s^3 \)	1	77
\(s^2 \)	18	\(K \)
\(s^1 \)	\(s^0 \)	

For system to be stable: \(K < 77(18) \)
Three Specifications for Analysis & Design

- Transient Response (Chapter 4)
 - Performance specifications for 1st and 2nd order systems

- Stability (Chapter 6)
 - Pole locations
 - Routh-Hurwitz Method

- Steady-State Errors (Chapter 7)